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Introduction

Introduction

PSO is originally attributed to Kennedy, Eberhart in 1995.

It solves a problem by having a population of candidate solutions,
here dubbed particles, and moving these particles around in the
search-space using the position and velocity of particles.

Inspired by the social behavior of birds

Advantages

Very few hyperparameters.
Idea very similar to GA
It can be parallelized.
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How it works?

Example

Function to minimize 2D and 3D view
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How it works?

Particles

First we define a group of particles (potential solutions) over the search
space.

Pt
i = [x t0,i , x

t
1,i , x

t
2,i , . . . , x

t
n,i ]

n is the number of dimensions
t is the generation
i is the index of the particle

All particles have fitness values evaluated by the fitness function to be op-
timized.
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How it works?

Velocity

Each of these particles is in movement with a velocity allowing them to
update their position over the iterations to find the global minimum.

V t
i = [v t0,i , v

t
1,i , v

t
2,i , . . . , v

t
n,i ]

n is the number of dimensions

t is the generation

i is the index of the particle

Note that, positions and velocities of particles are assigned randomly.
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How it works?

Swarm

Unlike GA, PSO has no evolution operators such as crossover and
mutation

Each particle is randomly accelerated towards:

its previous best position (personal best)
the best solution of the group (global best).

Thus, the velocity is subject to inertia and is governed by the two
best values found so far.
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How it works?

Swarm
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Optimization

Optimization

V t+1
i = wV t+1
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w ∈ R+ : Inertia coefficient.

c1R+ and r1 ∈ [0,2] Cognitive coefficients.

c2R+ and r2 ∈ [0,2] Social coefficients.

These coefficients control the levels of exploration and exploitation.
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Optimization

Effects of Coefficients

A low coefficient w facilitates the exploitation of the best solutions
found so far

A high coefficient w facilitates the exploration around these solutions.

Note that it is recommended to avoid w > 1 which can lead to a
divergence of our particles.
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Optimization

Effects of Coefficients

When c1,r1 are high and c2,r2 are low:

Swarm are more individualistic

Therefore, no convergence

When c2, r2 are high and c1,r1 are low:

Swarm are more more influenced by the others.

May converge to local minima.

The coefficients c1 and c2 are consequently complementary. A
combination of the two increases both exploration and exploitation.
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Optimization

Auto hyperparameters

Coefficients are usually updated automatically over the iterations.

w t
= 0.4 t−N

N2 + 0.4
ct1 = −3 t

N + 3.5
ct2 = +3 t

N + 0.5

Starting with a strong c1, strong w, and weak c2 to increase the exploration
of the search space, we want to tend towards a weak c1, weak w, and strong
c2 to exploit the best results after exploration by converging towards the
global minimum.
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Optimization
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Optimization

Questions
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